

The Information Dynamics of Phase Transitions in Random Boolean Networks

Joseph T. Lizier^{1,2}, Mikhail Prokopenko¹, Albert Y. Zomaya²
1. CSIRO ICT Centre; 2. School of IT, The University of Sydney

Info Dynamics of Phase Transitions in RBNs

 Aim: To study the phase transition in ordered-criticalchaotic behaviour in RBNs (as models of GRNs) from the perspective of distributed computation.

 Results: Identified maximisations in information storage and coherent information transfer on either side of the critical point.

Contents

- Phase transitions in RBNs
- Information dynamics of distributed computation
- Measurement of information dynamics in RBNs
- Results and their implications

Computation in Networks: motivation

- Several authors suggest phase transitions in propagation and processing of information in networks between ordered and chaotic regimes, e.g.:
 - Message generation rate and mutual info in state of nodes in a model of computer networks (Solé and Valverde, 2001)
 - Branching ratio in a network of excitable elements (Kinouchi and Copelli, 2006)
 - Mutual info between node pairs in RBNs (Ribiero et. al., 2008)
 - Entropy in avalanche size in RBNs (Rämö et. al., 2008)
- We are particularly interested in RBNs:
 - Generality as network models with large sample space
 - Well-known phase transition
 - Popularity as models of Gene Regulatory Networks

Random Boolean Networks

RBNs used here have:

- N nodes in a directed structure,
- which is determined at random from an average indegree \overline{K} .

Each node has:

- Boolean states updated synchronously in discrete time.
- Update table determined at random.

• See Kauffman "Origins of order" (1993) or Gershenson (2004).

Random Boolean Networks

Phase transitions in RBNs

Connectivity	$\frac{Low}{K}$ < 2	Intermediate $\overline{K} \approx$ 2	$\frac{High}{K} > 2$
Phase	Ordered	Critical	Chaotic
Sensitivity to initial conditions	Low δ < 0	Critical δ≈ 0	High δ > 0
Convergence of similar macro states	Strong	Uncertain	Highly divergent

Information dynamics

• Information dynamics of distributed computation in terms of 3 components of Turing universal computation:

Information storage

- Information storage: info in past of an agent relevant to predicting its future.
- Active info storage = mutual info between past and next step:

$$A_{X}(k) = I(X', X^{(k)})$$

- Info to predict next state $H_x =$
 - Info from past $A_x(k)$ +
 - Remaining uncertainty H_{μx}(k)

Information transfer

 Apparent transfer entropy: mutual information between source and destination conditioned on the past of the destination, e.g.

$$T_{Y1\to X}(k)=I(Y_1,X';X^{(k)})$$

Information transfer

• Complete transfer entropy also conditions on other causal information sources, e.g. $T^{C}_{Y_1 \to X}(k) = I(Y_1, X'; X^{(k)}, Y_2)$

Experimental details

- Measure the average information dynamics as a function of average connectivity \overline{K} .
- Networks of 250 nodes
- Poissonian distributed in-degree for each node based on average in-degree $1 \le \overline{K} \le 4$
- RBNs modelled with enhancements to the RBNLab software.
- For each *K*:
 - Average the measures over at least 250 RBNs.
 - For each RBN:
 - Average the measures over at least 50 nodes/links, using observations of 400 steps of RBN evolution from at least 4000 random initial states.
- Use $k \ge 13$ for information dynamics calculations.

Results: domination of phases

Results: make-up of information transfer

- Apparent transfer entropy peaks close to critical phase
- Complete transfer entropy continues to rise in chaotic regime

Results: positioning around critical point

- Information storage peaks slightly within the ordered regime.
- (Coherent) Information transfer peaks slightly within the chaotic regime.

Conclusions

- Quantified the fundamental nature of distributed computation around phase transitions in RBNs.
- First exploration of info dynamics of an order-chaos phase transition:
 - Provides insights into maximisation versus intermediate level of information transfer near critical point.
 - Results may be pertinent to similar phase transitions.
- Future work:
 - Further explore relation of topology and information dynamics.
 - Use info dynamics to explain other measures of phase transitions.
 - Explore whether info dynamics can be used to drive evolution or self-tuning adaptation of RBNs to produce critical networks.

www.csiro.au

ICT Centre

Joseph Lizier PhD Student

Phone: +61 2 9325 3167

Email: joseph.lizier at csiro.au

Web: www.ict.csiro.au

Thanks for travel support from:

 The Australian Research Council (ARC) Complex Open Systems Research Network (COSNet)

ALifeXI travel bursary

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176

Email: enquiries@csiro.au Web: www.csiro.au

