The information dynamics of phase changes in random Boolean networks

Author: Joseph Lizier, jlizier@it.usyd.edu.au Supervisor: Prof. Albert Zomaya; Dr. Mikhail Prokopenko (CSIRO) School of Information Technologies

1. Aim

To study the phase transition in orderedcritical-chaotic behaviour in Random Boolean Networks (RBNs):

- as models of Gene Regulatory Networks (GRNs),
- from the perspective of distributed computation.

2. Random Boolean Networks

Discrete dynamical models of nodes [1]:

- In a directed network structure,
- which is determined at random from an average in-degree /K;
- With Boolean states,
- Updated synchronously in discrete time,
- using heterogeneous random update functions.

RBNs exhibit a well known phase transition from ordered-chaotic behaviour as a function of the connectivity /K:

(quantified with respect to δ - the Hamming distance between the final attractors of two initial networks states differentiated by only a single node's state)

Connectivity /K	Low /K < 2	Mid /K ≈ 2	High /K > 2
Phase	Ordered	Critical	Chaotic
Sensitivity to initial conditions	Low δ < 0	Critical δ≈ 0	High $\delta > 0$
Convergence of similar macro states	Strong	Uncertain	Highly divergent

3. Why study RBNs?

- Their popularity as models of GRNs: network attractor represents cell type.
- Generality as network models with a large sample space – permits study of dynamics of networks rather than topology.
- Ideal platform for studying generalised phase transitions in networks.

4. Why study information dynamics in RBNs?

- Topology is well-established but timeseries dynamics less understood.
- Much conjecture on phase transitions in information propagation and processing b/w ordered and chaotic regimes in RB and other nets.
- Our perspective of computation aligns with popularly held notions of information dynamics.
- Computation performed by the RBN to determine attractor has meaning as determination of cell type by GRNs.

5. Information dynamics

- Information storage: info in past of an agent relevant to predicting its future [2].
- Active info storage = mutual info
 between past k steps and next step:

$$\mathbf{A}_{\mathbf{X}}(\mathbf{k}) = \mathbf{I}(\mathbf{X}',\mathbf{X}^{(\mathbf{k})})$$

- •Information transfer: info provided by a source about destination's next state that was not contained in the past of the destination. [2]
- Apparent transfer entropy = mutual information between source and destination conditioned on the past of the destination, e.g.

$$T_{Y_1\to X}(k)=I(Y_1,X';X^{(k)})$$

 Complete transfer entropy also conditions on other causal information sources:

$$T_{Y_1 \to X}(k) = I(Y_1, X'; X^{(k)}, Y_2)$$

6. Results and Conclusion

- 1. Info storage maximised just on ordered side of critical regime.
- 2. (Coherent) info transfer maximised just on chaotic side of critical regime.
- 3. Balance near critical phase
- 4. Info modifications continues to increase into the chaotic regime.
- → Pertinent to phase txs in other systems
- → With evidence that GRNs operate at critical regime, implies that GRNs have evolved to facilitate maximum coherent computational capability.

References

- 1. C. Gershenson, "Introduction to Random Boolean Networks," Int. Conf. on Simulation and Synthesis of Artificial Life (AlifeIX), Boston, 2004.
- 2. J.T. Lizier, M. Prokopenko, and A. Y. Zomaya, "The information dynamics of phase transitions in random Boolean networks," Int. Conf. on Simulation and Synthesis of Artificial Life (AlifeXI), Winchester, 2008.

