

Coherent local information dynamics in complex computation

Joseph T. Lizier^{1,2}, Mikhail Prokopenko^{1,3}, Albert Y. Zomaya² 1. CSIRO ICT Centre; 2. School of IT, The University of Sydney; 3. Max Planck Institute for Mathematics in the Sciences, Leipzig

Information, computation and complex systems, Sept 24 2009

Computation: memory, signalling, processing

- We talk about computation as: We quantify computation in terms of:
 - Memory
 - Signalling/Comms
 - Processing

- Information storage
- Information transfer
- Information modification
- Distributed computation is any process that involves these features, e.g.:
 - Time evolution of cellular automata
 - Information processing in the brain
 - Gene regulatory networks computing cell type
 - Flocks computing their collective heading
 - Ant colonies computing the most efficient routes to food sources
 - The universe is computing it's own future!
- Seth Lloyd in "Computing the universe"
 - "... all physical systems register and process information ... by understanding how the universe computes, we can understand why it is complex."
- Many conjectures about distributed computation in these systems, e.g.:
 - \checkmark Computation by gliders in cellular automata
 - \sim Maximisation of computational capabilities in order-chaos phase transitions

Local information dynamics

• We quantify the information dynamics of distributed computation in terms of 3 components of Turing universal computation:

- We focus on the local scale of info dynamics in space-time
 - This is typically a better characterisation of computation than averages; e.g. how much info is transferred from X₁ to X₂ at time n?

Information storage

- Information storage: info in past of an agent relevant to predicting its future.
- Active info storage = mutual info between past and next step:

$$A_X(k) = I(X; X^{(k)})$$

• Is the average of a *local* active information storage at each time point:

$$A_X(k) = \langle a_X(n,k) \rangle_n$$

$$a_X(n,k) = \log_2 \frac{p(x_n^k, x_{n+1})}{p(x_n^k)p(x_{n+1})}$$

• Compare to excess entropy

Local information storage in CAs: rule 54

⁽d)a(i, n, k = 16) : -ve

Information transfer

Apparent transfer entropy: mutual information between source and destination conditioned on the past of the destination, e.g.
T_{Y1→X}(k)=I(Y₁,X';X^(k))

Information transfer

• **Complete** transfer entropy also conditions on other causal information sources, e.g. $T^{C}_{Y_{1}\rightarrow X}(k)=I(Y_{1},X';X^{(k)},Y_{2})$

Local information transfer in CAs: rule 54

• Gliders are info transfer agents

Information modification

• Define Local Separable Information as:

$$s_X(n) = a_X(n) + \sum_{Y \in V, Y \neq X} t_{Y \to X}(n)$$

- n-k+1 Average over all time steps to : get $S_{\chi}(k)$.
 - s > 0: trivial info modification.
- n-1 n n+1 n+1 n = 1 n+1 n = 1 n =interact.

Also comparing to a local measure of irreversibly destroyed information:

 $h(x_{i,n}|...,x_{i-1,n+1},x_{i,n+1},x_{i+1,n+1},...)$

Local information modification in CAs: rule 54

Local information dynamics in CAs: rule 22

← Information storage

← Information transfer

← Information modification

CSIRO. Version 1.0 (ICCS 2009)

Random Boolean Networks

RBNs used here have:

- N nodes in a directed structure,
- which is determined at random from an average indegree \overline{K} .

Each node has:

- Boolean states updated synchronously in discrete time.
- Update table determined at random.
- See Kauffman "Origins of order" (1993) or Gershenson (2004).

Phase transitions in RBNs

Connectivity	Low <u>K</u> < 2	Intermediate $\overline{K} \approx 2$	High
Phase	Ordered	Critical	Chaotic
Sensitivity to initial conditions	Low δ < 0	Critical δ ≈ 0	High δ > 0
Convergence of similar macro states	Strong	Uncertain	Highly divergent

• Much diversity in behaviour of individual nodes and sampled networks

Average info dynamics through phase transition in RBNs

- Information storage peaks slightly within the ordered regime.
- Apparent transfer entropy slightly within chaotic regime.
- Complete transfer entropy continues to rise in chaotic regime.

Structure between local measures in rule 110

- Rule **110** clear structure seen in local information dynamics.
 - Structure appears to imply coherence of computation.
- What about other rules?

No structure between local measures in rule 30

- Rule **30** had no structure seen in local information dynamics.
- What do we expect for rule 22?

Structure between local measures in rule 22

- Rule 22 has structure in **between** the local dynamics which was not obvious from their individual profiles!
- These two views from the same framework provide new insights into debate on the nature of rule 22.

CSIRO. Version 1.0 (ICCS 2009)

Conclusion

• Presented a framework for local information dynamics in terms of:

- Information storage
- Information transfer
- Information modification
- Averages can be used to characterise computation
- Local view highlights coherent structure in complex computation and provides evidence for conjectures.
 - Can reveal hidden structure also

• Later/Future work:

- Apply measures to biological systems (e.g. brain imaging).
- Investigate relationship between network structure and dynamics
- Guiding self-organisation with coherent computation.
- How do info dynamics correspond to computational classes.

References

- These and other papers at http://www.cs.usyd.edu.au/~jlizier
- Lizier et al, "Local information transfer as a spatiotemporal filter for complex systems", PRE 77, 026110 (2008). arXiv:0809.3275
- Lizier et al, "A framework for the local information dynamics of distributed computation in complex systems", (2008) arXiv:0811.2690
- Lizier et al, "Differentiating information transfer and causal effect", (2009) arXiv:0812.4373
- Lizier et al, "The Information Dynamics of Phase Transitions in Random Boolean Networks", ALife XI (2008).

ICT Centre Joseph Lizier PhD Student

Phone: +61 2 9325 3167 Email: joseph.lizier at csiro.au Web: www.ict.csiro.au

Thank you

Phone: 1300 363 400 or +61 3 9545 2176 Email: enquiries@csiro.au Web: www.csiro.au

Contact Us

ww.csiro.au