Towards a Synergy-based Approach to Measuring Information Modification

Joseph T. Lizier, Benjamin Flecker and Paul L. Williams
Publications

Measuring local information modification

- Distributed computation is often discussed in terms of information storage, transfer and modification; e.g. (Langton, 1990).
- We have rigorous measures for information storage and transfer and their dynamics in time and space (*Information Dynamics*).

→ We seek a rigorous measure for **information modification**.
→ We seek a **local measure** for the **dynamics** of modification.

- The **Partial Information Decomposition** (PID) approach shows promise for application – we explore how it could be applied to modification and whether this can be localised.
Contents

- Information theory background: local information measures;
- Information dynamics and information modification;
 - Requirements for a measure of information modification;
- The Partial information decomposition approach;
- Application of PID to local information modification:
 - New axiom for localisation;
 - I_{\min} shown to not satisfy this.
Information-theoretic concepts: 1. Shannon entropy

\[H(X) = - \sum_x p(x) \log_2 p(x) = \langle - \log_2 p(x) \rangle \]

\[H(X|Y) = - \sum_{x,y} p(x,y) \log_2 p(x|y) \]

Demonstrated by Shannon (1948) as the unique formulation to satisfy:

1. **Continuity** w.r.t. \(p(x) \);
2. **Monotonic increase** with the number of equally-likely choices for \(x \);
3. **Grouping**: “If a choice (can) be broken down into two successive choices, the original \(H \) should be the weighted sum of the individual values of \(H \); i.e. \(H \) is independent of how the process is divided into parts.”
Information-theoretic concepts: 2. Mutual information (MI)

\[I(X; Y) = H(X) + H(Y) - H(X, Y) \]

\[= \sum_{x,y} p(x, y) \log_2 \frac{p(x|y)}{p(x)} \]

\[= \langle \log_2 \frac{p(x|y)}{p(x)} \rangle \]

Venn diagram from (MacKay, 2003)
Information-theoretic concepts: 3. Conditional MI

\[I(X; Y|Z) = H(X|Z) + H(Y|Z) - H(X,Y|Z) \]
\[= \left\langle \log_2 \frac{p(x|y,z)}{p(x|z)} \right\rangle \]

\[I(X; Y, Z) = I(X; Z) + I(X; Y|Z) \]

\(I(X; Y|Z) \) can be either **larger or smaller** than \(I(X; Y) \):

- Conditioning removes **redundant** information in \(Y \) and \(Z \) about \(X \);
- Conditioning includes **synergistic** information in the pair \(\{Y, Z\} \) about \(X \).

→ Can’t measure these effects separately with traditional information theory.
Information-theoretic concepts: 4. local measures

We can write local (or point-wise) information-theoretic measures for specific observations/configurations \(\{x, y, z\} \):

\[
\begin{align*}
 h(x) &= - \log_2 p(x), \\
 h(x|y) &= - \log_2 p(x|y), \\
 i(x; y) &= \log_2 \frac{p(x|y)}{p(x)}, \\
 i(x; y|z) &= \log_2 \frac{p(x|y, z)}{p(x|z)}.
\end{align*}
\]

- We have \(H(X) = \langle h(x) \rangle \) and \(I(X; Y) = \langle i(x; y) \rangle \), etc.
- If \(X, Y, Z \) are time-series, local values measure dynamics over time.
Information-theoretic concepts: 4. local measures

Q: Where do these local values come from, and what do they mean?

Local entropy: \(h(x) = -\log_2 p(x) \):

- \(h(x) \) is the uncertainty attributed to the specific symbol \(x \) or information required to uniquely specify/predict that symbol.
- Less probable outcomes \(x \) have higher information content.
- \(h(x) \geq 0 \)
- Can be derived as the unique form satisfying (Ash, 1965):
 - \(h(p_1 \times p_2) = h(p_1) + h(p_2) \);
 - monotonic decrease of \(h(p) \) with \(p \);
 - continuity with \(p \).
- \(h(x) \) is the code-length for symbol \(x \) in an optimal encoding scheme for measurements of \(X \).
Information-theoretic concepts: 4. local measures

Q: Where do these local values come from, and what do they mean?

Local mutual information: \(i(x; y) = \log_2 \frac{p(x|y)}{p(x)} : \)

- \(i(x; y) \) is the MI attributed to the specific symbol pair \(x, y. \)
- MI increases as \(p(x \mid y) \) becomes larger than \(p(x) . \)
- Local MI can be negative – where \(p(x \mid y) \) is lower than \(p(x) \), i.e. \(y \) was misinformative about \(x. \)

\[i(x; y) = h(x) - h(x \mid y) : \text{coding penalty for } x \text{ in not being aware of } y (\text{under optimal encoding schemes for } X \text{ or } X \text{ given } Y) . \]

\(\rightarrow \) Fano (1961) set criteria to uniquely define local & cond’l MI:
- once-differentiability,
- similar form for conditional MI,
- additivity: \(i(\{y, z\}; x) = i(y; x) + i(z; x \mid y) , \) and
- separation for independent ensembles.
Credit assignment problem and information modification

Fundamental question: How can we describe the assignment of information in a target variable amongst several sources?

We will bring together two complementary approaches to study information modification:

1. **Information dynamics** (Lizier et al., 2008, 2010, 2012);
2. **Partial information decomposition** (Williams and Beer, 2010a,b).
Information dynamics

Studies computation of the next state of a target variable in terms of information storage, transfer and modification: (Lizier et al., 2008, 2010, 2012)

Active information storage:

\[A_X = \langle a_X(n) \rangle = \langle i(x_{n+1}; x_n^{(k)}) \rangle \]

Information from past state that is in use in predicting the next value
Information dynamics

Studies computation of the next state of a target variable in terms of information storage, transfer and modification: (Lizier et al., 2008, 2010, 2012)

Transfer entropy:

\[T_{Y \rightarrow X} = \langle t_{Y \rightarrow X}(n) \rangle = \langle i(x_{n+1}; y_n | x^{(k)}_n) \rangle \]

Info from source that helps to predict destination value in the context of destination’s past state.

(Higher order) Conditional transfer entropy:

\[T_{Y_1 \rightarrow X | Y_2} = \langle t_{Y_1 \rightarrow X | Y_2}(n) \rangle = \langle i(x_{n+1}; y_{1,n} | x^{(k)}_n, y_{2,n}) \rangle \]

Total information:

\[H(X) = A_X + T_{Y_1 \rightarrow X} + T_{Y_2 \rightarrow X | Y_1} \]
Information dynamics

Studies computation of the next state of a target variable in terms of information storage, transfer and modification: (Lizier et al., 2008, 2010, 2012)

Active information storage:
\[A_X = \langle a_X(n) \rangle = \left\langle i(x_{n+1}; x_n^{(k)}) \right\rangle \]

Transfer entropy:
\[T_{Y\rightarrow X} = \langle t_{Y\rightarrow X}(n) \rangle = \left\langle i(x_{n+1}; y_n|x_n^{(k)}) \right\rangle \]

Why this perspective? These are well-understood terms; they can be measured on any type of time-series; and computation is the language in which dynamics are often described (Langton, 1990).
Information dynamics in cellular automata

Local information storage and transfer confirm conjectures (Langton and others) regarding computational roles of blinkers and gliders.

![Raw CA](a) Raw CA ![Storage dynamics](b) Storage dynamics ![Transfer (to right) dynamics](c) Transfer (to right) dynamics

(Lizier et al., 2008-2012)

J.T. Lizier - Java Information Dynamics Toolkit (JIDT)
http://code.google.com/p/information-dynamics-toolkit/

→ But we lack a *satisfactory* measure for *information modification* - hypothesized to confirm glider collisions as modifications (Langton, 1990).
Information modification

Langton (1990): interactions between transmitted and/or stored information which result in a modification of one or the other. A dynamic combination / synthesis / non-trivial processing of information from two or more (storage or transfer) sources.

A measure of information modification M_X should:

1. be a proper information-theoretic quantity;

2. examine the interaction between the information storage $X^{(k)}$ and causal transfer sources $Y \in \{Y_1, \ldots, Y_g\}$;

3. allow local measurement m_X at specific observed configurations \((x_{n+1}, x_n^{(k)}, y_{1,n}, \ldots, y_{g,n}) \);

4. be extendible to an arbitrary number of sources g.

→ Our previous suggestions (Flecker et al. (2011); Lizier et al. (2010)) don’t properly qualify.
Partial information decomposition (PID)

Abstract framework to measure arbitrary *Pl-terms*: redundancies, synergies and unique contributions from source variables to a target (Williams and Beer, 2010a,b).

E.g. Decompose MI from *two* sources – only have *three* info-theoretic primitives (marked), but have *four unknown Pl-terms*:

Redundancy: \(\{ M \} \{ Y \} \)
Unique information: \(\{ M \} \) and \(\{ Y \} \)
Synergy: \(\{ M, Y \} \)

Conditional MI: \(I(X; Y|M) \)
PI-diagram for three source variables

More complicated - 7 primitives and 17 unknown PI-terms!
Partial information decomposition (PID)

\[I(X; Y) \]
\[I(X; M) \]
\[I(X; M, Y) \]

Key: measure redundancy \(I_n(X; \{M\}, \{Y\}) \) and other PI-terms \(I_\partial \) follow via inclusion-exclusion algebra, if \(I_n(\mathbf{A}_1 \ldots \mathbf{A}_{r-1}, \mathbf{A}_r) \) conforms to a specific set of axioms:

Axiom 1. Symmetry: \(I_n \) is symmetric in the \(\mathbf{A}_i \)'s.

Axiom 2. Self-redundancy: \(I_n(X; \mathbf{A}_i) = I(X; \mathbf{A}_i) \).

Axiom 3. Monotonicity: \(I_n(X; \mathbf{A}_1 \ldots \mathbf{A}_{r-1}, \mathbf{A}_r) \leq I_n(X; \mathbf{A}_1, \ldots, \mathbf{A}_{r-1}) \) with equality if \(\mathbf{A}_{r-1} \subseteq \mathbf{A}_r \).
$I(X; M) \rightarrow A_X$

$I(X; Y_1|M) \rightarrow T_{Y_1 \rightarrow X}$

$I(X; Y_2|M, Y_1) \rightarrow T_{Y_2 \rightarrow X|Y_1}$

Flecker et al. (2011)
Previous approaches to info modification don’t qualify

1. Separable information (Lizier et al., 2010)
 \[s = a_X + t_{Y_1 \rightarrow X} + t_{Y_2 \rightarrow X} < 0 \]

2. Highest order synergy (Flecker et al., 2011)
Identifying information modification in PI-diagram

- **White area**: information about X that can be found in any one source $\{M, Y_1, Y_2\}$
- **Recall**: information modification as synthesis of information from two or more (storage or transfer) sources – **synergies**
- **Identify information modification in green and blue areas**: information about X that can only be found in a pair or larger combination of sources.

Satisfies our requirements to measure information modification, if we have a localisable redundancy measure $I \cap \ldots$
Localising redundancy I_{\cap}

We propose a new axiom for a redundancy measure I_{\cap} to be localisable:

Axiom 5. Localizability: There exists a local measure $i_{\cap}(x; a_1, \ldots, a_r)$ for the redundancy of a specific observation $\{x, a_1, \ldots, a_r\}$ of $\{X, A_1, \ldots, A_r\}$ such that:

1. $i_{\cap}(x; a_1, \ldots, a_r)$ satisfies the corresponding symmetry and self-redundancy axioms as per $I_{\cap}(X; A_1, \ldots, A_r)$;
2. $I_{\cap}(X; A_1, \ldots, A_r) = \langle i_{\cap}(x; a_1, \ldots, a_r) \rangle$;
3. $i_{\cap}(x; a_1, \ldots, a_r)$ is once-differentiable with respect to changes in $p(x, a_1, \ldots, a_r)$; and
4. $i_{\cap}(x; a_1, \ldots, a_r)$ is uniquely defined for the given candidate redundancy measure.
Localising redundancy I_\cap

Axiom 5. Localizability: *There exists a local measure* $i_\cap(x; a_1, \ldots, a_r)$ *for the redundancy of a specific observation* $\{x, a_1, \ldots, a_r\}$ *of* $\{X, A_1, \ldots, A_r\}$

- Has similar requirements to I_\cap and local MI, but no requirement for i_\cap to satisfy monotonicity – local MI values can increase or decrease with number of variables so long as average increases;
- Since local MI can be negative, so too can i_\cap;
- Sliding window methods are not local values;
- Motivation for a local redundancy measure goes beyond application for information modification: it would make any PI-term measurable on a local scale.
I_{min} – a concrete measure for redundancy I_n

Interpretation: I_{min} measures the *minimum* amount of information that can be found in any single source about the value of the target variable (averaged over all target values).

Mathematical definition: (Williams and Beer, 2010a)

$$I_{\text{min}}(X; A_1, \ldots, A_r) = \sum_s p(s) \min_{A_j} I(X = x; A_j),$$

$$I(X = x; A) = \sum_a p(a|x) \left[\log_2 \frac{1}{p(x)} - \log_2 \frac{1}{p(x|a)} \right].$$
I_{min} – a concrete measure for redundancy I_{\cap}

Example 1: OR function $X = A_1 + A_2$: $I_{\text{min}} = 0.311$ bits – e.g. A_1 and A_2 contain redundant information about the $x = 0$ outcome.

Example 2: *Two-bit copy problem* $X = \{A_1, A_2\}$:

$$I_{\text{min}}(\{A_1, A_2\}; A_1, A_2) = 1 \text{ bit}$$

Naive expectation: 1 bit of unique information for each variable, but actually get 1 bit of redundancy and 1 bit of synergy.

$\rightarrow I_{\text{min}}$ measures minimum information found in single sources, but does not specifically require each source to hold the *same* information.
New axiom and measures

To address the two-bit copy problem, a new axiom was proposed for I_n (Harder et al., 2012):

Axiom 4. Identity: $I_n(A_1, A_2; A_1, A_2) = I(A_1; A_2)$.

New candidates have been suggested which satisfy Axiom 4:

- Harder et al. (2012) – information geometric method to compute distance between distributions.
Localising candidate measure I_{min}

Intuition: i_{min} measures local MI from source which provided the minimum amount of information for the given target value.

Mathematical definition:

$$i_{\text{min}}(x; a_1, \ldots, a_r) = i(x; a_j) = \log_2 \frac{p(x \mid a_j)}{p(x)},$$

$$A_j = \arg \min_{A_j} I(X = x; A_j).$$

This is a unique form, since $I_{\text{min}}(X; A_1, \ldots, A_r) = I(X; A_j)$ for A_j defined above, and $i_{\text{min}}(x; a_1, \ldots, a_r)$ must average to this.
Localising candidate measure I_{min} - OR example

OR logic gate: $X = A_1 + A_2$

Redundancy $I_{min}(X; A_1, A_2) = 0.311$ bits.

Local redundancy $I_{min}(x; a_1, a_2)$ for each *almost* equiprobable configuration (a_1, a_2):

<table>
<thead>
<tr>
<th>a_1, a_2</th>
<th>x</th>
<th>$p(a_1, a_2)$</th>
<th>$\delta \to 0^+$</th>
<th>$\delta \to 0^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1, a_2</td>
<td>x</td>
<td>$p(a_1, a_2)$</td>
<td>arg min $I(X = x; A_j)$</td>
<td>$i(x; a_j)$</td>
</tr>
<tr>
<td>0,0</td>
<td>0</td>
<td>0.25</td>
<td>A_1</td>
<td>1</td>
</tr>
<tr>
<td>0,1</td>
<td>1</td>
<td>0.25 + δ</td>
<td>A_1</td>
<td>-0.585</td>
</tr>
<tr>
<td>1,0</td>
<td>1</td>
<td>0.25 - δ</td>
<td>A_1</td>
<td>0.415</td>
</tr>
<tr>
<td>1,1</td>
<td>1</td>
<td>0.25</td>
<td>A_1</td>
<td>0.415</td>
</tr>
</tbody>
</table>

→ i_{min} is not continuous, nor unique; I_{min} cannot be localised.
→ cannot use I_{min} to measure local information modification.
Prospects with other measures – Harder et al. (2012)

\[I_{\text{red}}(Z; X, Y) := \min \{ I_{\pi}^Z(X \downarrow Y), \]
\[I_{\pi}^Z(Y \downarrow Y) \} \]

However:

- The projection is not guaranteed to be unique (and it is the projection that would determine the local values);
- the measure is not extendible to arbitrary number of sources;
Prospects with other measures – Griffith and Koch (2012)

\[I_U(\{A_1, \ldots, A_n\}; X) = \min_{p(x'|x)} I(\{A_1, \ldots, A_n\}; X') \]

subject to: \(\{A_1, \ldots, A_n\} \rightarrow X \rightarrow X' \)

\[I(A_i; X') = I(A_i; X) \quad \forall i \]

Again however, this maps to a non-unique PDF for computing local values.
Prospects with other measures

Final comments:
→ There may be scope to extend these measures in future, bearing our new axiom in mind.
→ Or, perhaps localizability cannot co-exist with the other axioms, as shown by Bertschinger et al. (2012) regarding strong symmetry and the existing axioms . . .
Conclusion and Future prospects

Contribution:
1. Linked information dynamics & PID to define info modification;
2. Additional localisability axiom for PID’s redundancy I_\cap;
3. Showed that I_{min} is unsuitable for these.
4. Open-source PID/I_{min} code.

Hopefully new redundancy measures will satisfy localizability ...
References

Thank You

CSIRO ICT Centre

Joseph Lizier

t +61 2 9372 4711
e Joseph.Lizier@csiro.au
w http://lizier.me/joseph/

JL thanks the Max Planck Insitute for Mathematics in the Sciences for supporting this visit