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Abstract Small failures in electrical energy networks can lead to cascading failures

that cause large and sustained power blackouts. These can disrupt important services

and cost millions of dollars. It is important to understand these events so that they may

be avoided. We use an existing model for cascading failures to study the information

dynamics in these events, where the network is collectively computing a new stable

distribution of flows. In particular, information transfer and storage across the net-

work are shown to exhibit sensitivity to reduced network capacity earlier than network

efficiency does, and so could be a useful indicator of critical loading. We also show that

the local information dynamics at each node reveals interesting relationships between

local topological features and computational traits. Finally, we demonstrate a peak in

local information transfer in time coinciding with the height of the cascade’s spread.
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1 Introduction

Modern energy, communication and transportation networks have evolved in various

complex ways to satisfy the demands of their end-users under various resource con-

straints, but of some concern is that they are all subject to cascading failure events [1,

8]: local failures that trigger avalanche mechanisms with large effects over the whole

network. Our focus is energy networks, where usage has increased faster than invest-

ment in infrastructure (much of which is reaching the end of its useful life) and the grid

has become critically loaded. As such, catastrophic blackouts and outages are occurring

more frequently (see examples in [1]) and with more adverse impact.
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It is likely that in the future energy networks will act as “smart grids”, with in-

telligent devices at key points in the grid sensing the network’s performance and col-

laborating to manage it. But in order to see such technology succeed, we first need a

proper understanding of how the network operates during disturbances. Our approach

is to examine the way the network intrinsically processes information during these

extreme events. Some of the motivation here arises from recent advances in the field

of complex systems science and artificial life, which has provided many examples of

information processing in the natural world that can be applied in the manufactured

environment, e.g. studies of regulatory networks (see [9,6]). Make no mistake: during

cascading failures, the network is in fact computing it’s new stable state (attractor),

so understanding this computation can help understand the dynamics here.

Here, we examine an existing model of cascading failures in power networks [1]

in order to measure the information storage and transfer taking place in the network

during these events. These measurements are made using a framework for the infor-

mation dynamics of distributed computation [5,7] that has previously been applied to

a model of biological regulatory networks [6]. Importantly the framework is built on

the application-independence of information theory, allowing an interchangeability of

learnings with other complex systems. Our results here demonstrate maximisations in

these computational capabilities near a phase transition in network efficiency as a func-

tion of spare capacity in the network. We also show interesting relationships between

the information dynamics at each node in the network and the topological properties of

the nodes. Finally, we find that the information transfer in the network is maximised as

the cascade is growing at its fastest rate, demonstrating an important duality between

the physical event and its informational interpretation.

2 Cascading failures model

Cascading failures in energy networks are studied here using the model described in [1]

(which is also applicable to communication or transport networks, e.g. the Internet).

The network is constructed as a weighted, undirected graph of N nodes (representing

substations) and K edges (representing the transmission lines). The model describes

the weights of each edge and loads of each node, and how these interdependently evolve

after the breakdown of a node.

Each edge has an efficiency eij(n) (akin to relative capacity in the energy networks

analogy) that changes with time n; if there is an edge from node i to j then eij(n) ∈
(0, 1] and is initialised to eij(0) = 1 (if there is no edge eij(n) = 0). Edge efficiency is

the inverse of edge weight, while the efficiency εij(n) of the most efficient path from i

to j is the inverse of the shortest path length (which is of course the same path) [4].

Each node i has a load Li(n), being the total number of most efficient paths passing

through it at time n (i.e. the load is the betweenness centrality of the node) [3]. Each

node is also assigned a capacity Ci, being the maximum load it can handle without

performance degradation. The capacity is assumed to be proportional to the initial

load of the node: Ci = αLi(0) [8], with α ≥ 1 being the fixed network tolerance.

The edge efficiencies become sub-optimal if (slightly altering the definition in [1])

either end-point node is operating above capacity:

eij(n + 1) =

{
eij(0) min

(
Ci

Li(n)
,

Cj

Lj(n)

)
if Li(n) > Ci or Lj(n) > Cj ,

eij(0) otherwise .
(1)
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Changes induced in edge efficiencies by excess loads cause changes in most efficient

paths and therefore the distribution of loads at the next time step. While the initial

state of the network is stable (since α ≥ 1.0), the removal of a node (simulating the

breakdown of a substation) triggers a dynamical process where the network loads are

redistributed. This process can cause other nodes to overload, shunting their loads

onwards to other nodes who then overload etc, stimulating a cascading failure in time.

The performance of the network as a whole during these events is tracked using

the average efficiency between all node pairs, E(n) =
〈
εij(n)

〉
. Typically, for large α

the network efficiency is relatively unaffected by node removal, however as α becomes

closer to 1 the lower tolerance means that node removal can have dramatic cascading

effects. Indeed the average network efficiency after node removals falls very quickly

with α as α → 1, moving from a stable (efficient) state to an unstable one.

3 Information dynamics

We have proposed a framework for the local information dynamics of distributed com-

putation in [5]. The framework describes computation in terms of information storage,

transfer and modification at each spatiotemporal point in a complex system. Built

on information theory, it provides a common, non-linear, application-independent lan-

guage in which to analyse and design complex systems.

Information storage refers to the amount of information in the past of a node

that is relevant to predicting its future. Memory has previously been studied in similar

bursty or cascade-style systems in [2] using correlation coefficients of inter-event times,

though information theory allows one to capture non-linear effects and is application

independent; indeed, memory is about information. As such here we use the active

information storage as the stored information that is currently in use in computing the

next state of the node [5]. Specifically, the local active information storage for node X

is the local (or unaveraged) mutual information between its semi-infinite past x
(k)
n (as

k →∞) and its next state xn+1 at time step n + 1:

aX(n + 1, k) = log2
p(x

(k)
n , xn+1)

p(x
(k)
n )p(xn+1)

. (2)

The active information is the average over time: AX(k) = 〈aX(n, k)〉.
Information transfer is formulated by the transfer entropy [10] as the information

provided by a source node about a destination’s next state that was not contained in

the past of the destination. Specifically, the local transfer entropy [7] from a source node

Y to a destination X is the local mutual information between the previous state of the

source yn and the next state of the destination xn+1, conditioned on the semi-infinite

past of the destination x
(k)
n (as k →∞):

tY→X(n + 1, k) = log2
p(xn+1|x

(k)
n , yn)

p(xn+1|x
(k)
n )

. (3)

Again, the transfer entropy is the (time) average: TY→X(k) = 〈tY→X(n, k)〉. It can be

measured for any two time series, but only represents information transfer when mea-

sured on a causal link. Importantly, the transfer entropy properly measures a directed,

dynamic flow of information, unlike previous investigations of information transfer in

networks with mutual information [9,11] which measure correlations only.
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Fig. 1 Information dynamics versus network tolerance α, plotted relative to their values for
α = 1.00. Transfer entropy T is averaged over all time steps for each link, then averaged over
all links, with T (α = 1.00) = 0.0155 bits. Similarly, active information storage A is averaged
over all nodes, with A(α = 1.00) = 1.10 bits. Also plotted is the final network efficiency 〈E〉
averaged over each simulated node removal.

4 Results and discussion

To measure the information dynamics of cascading failure events in power grids, we

use the model in Sect. 2 with the topology of the electrical power grid of the western

United States [12] (N = 4941 and K = 6594). For 1.0 ≤ α ≤ 1.3, we simulate the

breakdown of substations by removing 149 randomly selected nodes (one at a time)

and then measure the resulting time series of node loads and edge efficiencies until the

network reaches a (possibly periodically) stable state.

For each α, the active information storage Ai is measured from the loads for every

node i, and the transfer entropies Ti→j and Tj→i are measured in each direction

for each causal link ij between their time series of loads. We use a history length

k = 3. Probability distribution functions are estimated from the set of time series

of observations of loads obtained from all the separate node knockouts, using kernel

estimation (e.g. see [10]) with a kernel width of 0.5 standard deviations of each variable.

First, we examine the average information transfer (across all links, T =〈
Ti→j

〉
) and average information storage (across all nodes, A = 〈Ai〉) in the

network as a function of tolerance α. Fig. 1 shows that both reflect the phase tran-

sition in average network efficiency, being maximised in the vicinity of this transition.

Indeed, as α is reduced the information dynamics change more rapidly than network

efficiency (see 1.1 ≤ α ≤ 1.15) and could be a useful early indicator of critical loading.

The maximisations in these measures occur before the system is pushed into a chaotic

state at α = 1.0, in alignment with results from random boolean networks [6]. This

is because the increased activity in the network as α → 1.0 begins to obscure the

individual contribution of nodes and so measurement of information transfer falls.

We then examine the information transfer values locally at each link, Ti→j :

Fig. 2 shows a strong correlation of the transfer entropy (averaged over all applicable

links) to source node degree. Correlations are large (r ≥ 0.80) and significant (p <

0.01) for α in the vicinity of the phase transition, becoming somewhat weaker in the

stable region. Similar results are found for active information storage and node degree.

These effects are explained in that the more neighbours a node has, the more diversity
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Fig. 2 Average transfer entropy T versus degree of the source node for various α. The small
number of nodes with degree larger than eight introduces large errors beyond this point.

in its activity: this intrinsic variation in a node is a dominant factor in how much

information it can store and transfer. Indeed, this is why nodes with degree one have

zero information: with zero betweenness centrality their load never changes, so there

is no diversity they can transfer and no influence on them to measure. Note however,

that there is no corresponding correlation of the transfer entropy to the degree of the

destination node. Certainly, the increased diversity in the destination provides greater

scope for information transfer to it, but the more difficult it becomes to identify the

coherent effect of the source. We also measure small but significant (at p < 0.001)

correlation coefficients between the initial load of a node (i.e. its betweenness centrality)

and the information it stores and transfers to other nodes during the cascade (e.g. for

α = 1.05 these are 0.24 and 0.13 respectively). In a similar fashion to degree, as the

betweenness centrality of a node increases so to does its propensity to be influenced by

other nodes, and therefore the diversity of its activity increases.

Finally, we examine how the local information dynamics evolve in time

as the cascade unfolds. Fig. 3 shows that for α = 1.05 the local information transfer

values exhibit a strong peak around 12 time steps after the cascading failure (similar

plots are observed for other values of α). This peak lags the initial failure event but

coincides with the steepest drop in network efficiency. The cascade takes some time

to build up in size, but causes the steepest change in network efficiency and largest

information transfer when it is spreading at its most rapid. The relation between the

change in network efficiency and local information transfer (in time) is quite strong:

they have a correlation score of -0.94. The local information transfer could therefore be

a useful indicator of the peak of the cascade, as well as its subsequent passing. Indeed,

were the local values to be examined in space (i.e. on particular links) as well as time,

they could be used as indicators of the direction of spread of the cascade. Interestingly

though, the local values in space and time do not exhibit a strong correlation to local

loads - it appears the utility of the local information transfer in time discussed above

is an self-organised emergent effect which can be seen only at the macroscopic level.

5 Conclusion

We have characterised the information dynamics in cascading failure events in energy

networks, as the network computes its new stable state. We have demonstrated max-

imisations in information dynamics across the network near the phase transition in
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Fig. 3 Local transfer entropies in time (averaged across all links for the given time step n:
〈ti→j(n)〉ij) and network efficiency E(n) versus time after initial node removal. Both measures

are averaged across all simulated node knockouts with α = 1.05.

network efficiency, with the information dynamics initially changing faster than net-

work efficiency as the tolerance drops. We have also shown that the local information

dynamics (information stored, and transferred from) at each node are correlated with

node degree. Finally, we have demonstrated a strong relationship between the spread-

ing of the cascade (in an application-dependent level) and information transfer across

the network (in an application-independent manner). In future work, we plan to exam-

ine the effect of altering the topology of the grid (e.g. with mini-grid topologies), and

whether the insights gained here can be used to control such cascade events.
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